Respiratory Therapy Pocket Reference

Pulmonary Physiology

- **P**
 - Major stress measures: tidal volume (TV), minute ventilation (VE), PaCO₂, PaO₂, and PaO₂/FiO₂ ratio.
 - TV: the volume of air exchanged with each breath.
 - VE: the product of TV and respiratory rate (RR).
 - PaCO₂: the partial pressure of carbon dioxide in arterial blood.
 - PaO₂: the partial pressure of oxygen in arterial blood.
 - PaO₂/FiO₂: the ratio of PaO₂ to the inspired oxygen fraction (FiO₂).

Peak expiratory flow

- **PEFR**
 - Measures the maximum flow rate at a given point in the respiratory cycle.
 - Used to monitor bronchial reactivity in patients with asthma.

Minute Vent

- **V̇**
 - Calculated as VE/RR.
 - Represents the total volume of gas exchanged per minute.

Compliance

- **C**
 - Represents the change in volume per unit change in pressure.
 - Used to determine the elasticity of the respiratory system.

Resistance

- **R**
 - Represents the opposition to airflow.
 - Measured in units of resistance (ohms).

Resistance to peak inspiratory flow

- **Rt (PIP-PaL) inspir flow**
 - Represents the resistance to airflow during inspiration.

Alveolar Gas Equation

- For a given PaO₂ and PaCO₂, the alveolar PO₂ can be calculated using the alveolar gas equation:

 \[\text{PaO}_2 = \text{FiO}_2 \times \text{PaO}_2 \text{(inspired)} - \text{PaCO}_2 \times \frac{1}{\text{RQ}} \]

Hypoventilation

- Hypoventilation is a condition in which the alveolar ventilation is insufficient to remove CO₂ effectively.

Pressure Support (PS)

- **PS**
 - Represents the pressure added to deliver a specified volume of gas.
 - Used to overcome respiratory efforts and improve ventilator synchrony.

Volume Control (VC)

- **VC**
 - Represents the volume of gas delivered per breath.
 - Used to deliver a predetermined volume of gas to the patient.

Flow

- Represents the rate at which gas is delivered to the patient.

Synchronized Intermittent Mandatory Ventilation (SIMV)

- **SIMV**
 - Represents the volume of gas delivered to the patient during the ventilator’s inspiration cycle.

Misc Vent Settings

- **Misc**
 - Represents the miscellaneous settings that can be adjusted during ventilation.

Pressure Support (PS)

- **PS**
 - Represents the pressure added to deliver a specified volume of gas.
 - Used to overcome respiratory efforts and improve ventilator synchrony.

Pressure Support

- **PS**
 - Represents the pressure added to deliver a specified volume of gas.
 - Used to overcome respiratory efforts and improve ventilator synchrony.

Dual Mode

- **Dual Mode**
 - Represents the dual mode of ventilation.
 - Used to combine pressure support and volume control to achieve optimal ventilation.

Volume Control (VC)

- **VC**
 - Represents the volume of gas delivered per breath.
 - Used to deliver a predetermined volume of gas to the patient.

Flow

- Represents the rate at which gas is delivered to the patient.

Synchronized Intermittent Mandatory Ventilation (SIMV)

- **SIMV**
 - Represents the volume of gas delivered to the patient during the ventilator’s inspiration cycle.

Misc Vent Settings

- **Misc**
 - Represents the miscellaneous settings that can be adjusted during ventilation.

Pressure Support (PS)

- **PS**
 - Represents the pressure added to deliver a specified volume of gas.
 - Used to overcome respiratory efforts and improve ventilator synchrony.

Pressure Support

- **PS**
 - Represents the pressure added to deliver a specified volume of gas.
 - Used to overcome respiratory efforts and improve ventilator synchrony.

Dual Mode

- **Dual Mode**
 - Represents the dual mode of ventilation.
 - Used to combine pressure support and volume control to achieve optimal ventilation.
Normal expiration Palvolar CO₂ is mixed with gas from anatomic and physiologic deadspace measured by integrating exhaled volume.

Capnography Method
- Auscultation & passing a suction catheter
- Obstruction (mucous plug), small/medium circuit problem, ETT kink/occlusion/biting
- Dx = low compliance

End Expiratory Volume
- This difference (usually less than 5) can be used to estimate deadspace

PEEP/Intrinsis
- Gas trapping: inevitably returns to baseline
- Dx = high resistance
- Must be the best method to assess dynamic gas trapping

Ventilation
- Gas trapping: inevitably returns to baseline
- Dx = high resistance
- Must be the best method to assess dynamic gas trapping

ARDS Management
- Goal is to set PEEP to match or exceed auto-PEEP box)
- Lower inflection point
- Titrate PEEP to oxygenation is easy and reasonable, though pulmonary mechanics must be utilized, especially if poor oxygenation response
- Despite existence of numerous techniques (below), mean PEEP to maintain oxygenation requirements over past 24hrs

PARALYSIS
- Paralysis w/in 48h, x48h, severe ARDS, 24% mortality
- Failure of weaning
- Trial 1999
- CESAR Trial, 2010
- PROSEVA -- 10 mg/hr Cisatracurium ($)
- *No survival data; Caution: pulm vasodilators can cause incr LVEDP; do not use if intrinsic PEEP

Vent Liberation
- Must be done prior to extubation
- Lancet 1999
- BMJ, 2003
- Age: 16yr: 5 mL/kg
- 18yr: 6-7 mL/kg
- 20yr: 8-10 mL/kg
- Ventilation = minutes; see Table 1
- If <80mL/kg, return to 40/25 5s
- Caution: can kill a pt. Check with attending and RT

Management
- Pulse, BP, SPO2, RR, temperature, SpO2, ICP, ABG
- O2 saturation x 48h
- TSB, albumin, CRP, procalcitonin
- Kallil et al, IDSA Guidelines, 2017
- IDSA guidelines: 80mg/kg or 2nd generation ceftriaxone or other
mDRD with MSSA + pseudomonal coverage; MRSA tx if risk factors; double cover
- MSSA + pseudomonal coverage; MRSA tx if risk factors; double cover
- Lower inflection point = 10cmH₂O
- PEEP < 10cmH₂O
- Return to 40/25 5s
- Caution: can kill a pt. Check with attending and RT

ARDS
- Mortality difference
- ARDS Management
- Ventilator Set-up per ARDS Protocol
- Calcium: 11.0 - 10.0 mmol/L
- pH: 7.35 - 7.45
- Pao₂: 60 - 70 mmHg
- PEEP: 5 - 15 cmH₂O
- Titrate PEEP to oxygenation is easy and reasonable, though pulmonary mechanics must be utilized, especially if poor oxygenation response

Pseudomonal Infections
- Identifiable by sputum cultures
- pseudomonas if MDR risk factors; pseudomona if BSI; antimicrobial sensitivity; 72h pnd cultures
- Minimum susceptibility:
 - β-lactamase sensitive:
 - β-lactamase resistant:

Inhaled Prostacyclin (aka: PGI₂)
- Uses Vt normalized to functional aerated lung
- Effective than sustained inflation RM
- Paracrine stimulation of pulmonary vasculature
- Risk of bleeding
- NEJM, 2012
- NEJM, 2010
- Lancet
- European Society of Intensive Care Medicine (ESICM) guidelines, 2009
- Prostacyclin: 50mcg/kg/min via PC
- Maintenance dose: 20mcg/kg/min via PC
- Maximum dose: 70mcg/kg/min via PC
- PC more stable and labile and < 20 mmHg w/ CPP > 60 mmHg, 6) No MI in previous ~48hr

Repro: FACs & PEEP
- 1) FiO₂ > 60% (true reassurance); Mode: CMV
- > 15 L/min, 4) ~MAP > 60 mmHg (minimal pressors), 5) ICP: non-invasive
- ICP > 30cmH₂O, 24h, 6) High risk of serum lactate > 4mmol/L

PNEUMONIA
- Chest X-ray: consolidation, infiltrate, pleural effusion
- NLM: chest X-ray
- BSI: 1) CT chest, 2) WBCs, 3) CRP, 4) temperature
- Use without ICI
- Pathogens, risk factors
- Diagnosis:
 - Syndrome of inappropriate antidiuretic hormone (SIADH)
- Treatment:
 - Standard Rx: antibiotics
- Prognosis:
 - Mortality: > 70%
- Management:
 - Hydration:
 - Titrate PEEP to maintain end-exhaled CO₂ around 35-40 mmHg